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We consider a phenomenological approach to thermal relaxation processes near 
phase transitions. 

It is known that relaxation effects can significantly influence the propagation of heat 
in multicomponent, structured materials [1-3]. Near a phase transition these effects can 
lead to a wide temperature range of the transition and to a dependence on the history of the 
process. 

Since the relaxation processes considered here are accompanied by a rearrangement of the 
structure and other phase changes, the number of thermodynamic variables characterizing the 
state of the system increases. In the present paper, we study the case where the phase transi- 
tion into the isotropic medium is characterized by a single additional parameter D, the order 
parameter [4]. We let I be the corresponding affinity to the transition. Then the entropy 
production due to the change in order is written in the form [5] 

= - - L ~  8~1 L > O. (1 )  
Ot ' 

From the condition ~ > 0 we have in the linear approximation 

an k_---e , ~0 
at 

The order parameter D is a function of T and I: 

~1 = ~1 (T, ~). ( 2 )  

E x p a n d i n g  (2 )  i n  a p o w e r  s e r i e s  i n  t ,  i n  t h e  f i r s t  a p p r o x i m a t i o n  we o b t a i n  

= ~ I ( T ,  0 ) +  0~ ~. (3 )  
Ok 

We introduce the notation 0 = e(~n/~l), f(T) = q(T, 0). Then, with the help of (i), 

o ~ ~1-- f(T). (4) 
Ot 

From the law of conservation of energy it follows that 

OT 0~] 
c - -  -~ q - -  V (kvT),  (5 )  

Ot Ot 

where c = (~u/~T)~, q = (~u/3n)T, and the coefficients are functions of n. 

Therefore, the system of equations (4) and (5) describe the phase transition in the 

me d ium. 

It is not difficult to see that when f(T) = e(T -- To) and ~ -~ 0, we obtain the classical 
Stefan problem for a phase transition. 

As a model we considered the following example, where dimensionless variables are used: 

OT _ Fo 0 (k  OT')  O~l 
Ot Ox _ Ox ] - -  q O--l-' 

0 0 q  -6~] = e(T),  
Ot 
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where c -- 

# O,t x 

Fig. 1 

Fig. !. Temperature distribution in x: 
3) 0.i. 

I 
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Fig. 2 

curve I) O = 0; 2) 0.05; 

Fig. 2. Dependence of the motion of the temperature front bound- 
ary ~(t) on time. Curve i) 6 = 0; 2) e = 0.05; 3) e = 0.i. 

TI; k = - - +  I - -  ~1; - -2;  
Co ko ko Co ko 

--0.25; F o = 0 . 1 2 5 :  q - - 5 ,  

and the initial and boundary conditions are T(x, O) = ~(x, 0) = 0, T(0, t) = i. Here the 
subscript 0 corresponds to the solid phase (~ = 0) and 1 to the liquid phase (D = i). 

Calculations were performed for three values of e. The results for @ = 0.05, 9 = 0.i, 
and the exact solution of the Stefan problem for this case [6] are shown in Figs. l and 2. 
For 9 = 0.I the curves practically coincide with the corresponding curves for e = O, i.e., 
for small values of the parameter @ the solution of (4) and (5) is well-approximated by that 
of the Stefan problem. Therefore, the solution of (4), (5) at small e can be considered as 
equivalent to smoothing the delta function in the solution of the Stefan problem [6]. 

As already noted, at small 0 the effect of the relaxation term in (4) on the process is 
insignificant. Therefore, in practice, the relaxation term may be ignored in this case. How- 
ever, relaxation effects are important in determining the parameters of the phase transition, 
particularly the transition temperature. When 9 = 0, the transition occurs instantaneously 
(a step function). Therefore the transition temperature is the temperature at which one 
phase transforms into the other. When 0 # 0 the transition does not proceed instantaneously. 
It follows from (4) that the time dependence of the parameter n, characterizing which phase 
the substance belongs to, has the form 

for heating and 

~q= [ 1 - - e x p (  t--to O -)]e(t--to) 

.... l--exp ( t--s176 )e(t--to) 
for cooling. Here to is the instant of time when, at an observation point, the temperature 
has reached the phase transition temperature. Obviously this mechanism gives a change in the 
state of the material for a certain finite change An in the parameter n. In this case the 
transition will be detected at the instant of time t~ = to- 0 in (i- A~)o Then the error 
in determining the transition temperature will be dete~mined by the change in temperature 
after time t~ -- to~ which in turn is determined by the rate of change of temperature. In 
cooling processes the error will have the opposite sign from that in heating processes. These 
effects may explain the dispersion in the results for the solidification temperatures of pet- 
roleum products by different methods. 

NOTATION 

T, temperature; u, specific internal energy; k, thermal conductivity; Fo, Fourier num- 
ber; e(-), Heaviside unit step function; To, phase transition temperature. 
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METHOD OF CONSTRUCTING A SINGLE EQUATION OF STATE 

SATISFYING THE REQUIREMENTS OF THE SCALING HYPOTHESIS 

V. A. Rykov UDC 536.71 

We present an equation of state which quantitatively and qualitatively describes 
correctly the regular part of the thermodynamic surface and also the region near 
the critical point. 

By a single equation of state, we mean a single structural form which within some given 
small error describes the experimental thermal and caloric data in the gas and liquid phases, 
and also on the liquid-vapor coexistence curve for temperatures ranging from T3 up to Tc, and 
which describes correctly all of the features of the behavior of the material over this tem- 
perature range [i]. 

Among the important features are the following [2]: 

i) The limit p ~ 0 and p ~ 0 (the equation of state of an ideal gas) 

p ( p - + O ,  T) = RpT, ( 1 )  

2) the equality of the chemical potentials on both branches of the liquid--vapor coexist- 
ence curve 

3) the Planck-~ibbs rule 

4) the critical condition 

,tt" - -  tt' = O, (2) 

dT ) r = T  e \ O r /~,=Oe,T=r c '  

I n  a d d i t i o n  t o  t h e s e  c h a r a c t e r i s t i c s  i t  i s  i m p o r t a n t  t o  n o t e  t h e  s i n g u l a r i t i e s  o f  t h e  
thermodynamic surface near the critical point. The modern view, based on accurate experi- 
mental research and the scaling theory of critical phenomena~ holds that the behavior of the 
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